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When subjected to the conditions of a Semmler—Wolff/Schroeter aromatization, the oximes of 4-benzyl-substituted tetralones undergo an
electrophilic aromatic substitution reaction to form tetracyclic frameworks.

Various synthetic applications for oximes have been
reported since their first application to the identifica-
tion of ketones and aldehydes in the late 19th century.'
The Beckmann rearrangement of ketoximes is a classi-
cal textbook reaction, which has found widespread
utility.? Oximes are known to react as O or N nucleo-
philes,® and their use as C=N electrophiles has been
reported.* Additionally, their C—H acidity is often
sufficient for a-alkylation-reactions, and coordination
of transition metal atoms can lead to a 5-C—H activa-
tion through cyclopalladation reactions for example.’
A lesser known reaction is the aromatization under
acidic conditions of oximes derived from o,3-unsatu-
rated cyclohexanones, first described by Semmler and
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Wolff and later extended to oximes of a-tetralones by
Schroeter and his collaborators.®

A few years ago, we devised a concise route to
a-tetralones’ based on the radical xanthate transfer
technology® and applied it to the total synthesis of
a number of natural products such as norpar-
vulenone, O-methyl asparvenone, and shinanolone.’
We also found that a-tetralones 3, obtained by the
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addition—cyclization of an S-phenacyl xanthates 1 to
vinyl acetate or vinyl pivalate, underwent facile aroma-
tization upon heating with acid to give the correspond-
ing naphthols 4 (Scheme 1).'°

Scheme 1. Unexpected Formation of a Tetracyclic Product
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To complement this very effective synthesis of naphthols
(and naphthalenes, more generally), we contemplated
applying the Semmler—Wolff/Schroeter reaction to obtain
o-naphthylamines. We therefore prepared a-tetralone
6a by addition of xanthate 1a to allylbenzene, and the
resulting adduct 5a was ring closed by exposure to stoi-
chiometric amounts of lauroyl peroxide. The correspond-
ing oxime 7a was then heated to 80 °C for 40 min in neat
acetic anhydride to form the O-acetate 8a, followed by
addition of a mixture of acetic and methanesulfonic acid
and heating to 130 °C for 30 min. We were surprised to
find after purification of the crude mixture that the major
product was not the expected N-acetyl naphthylamide
9a (32%) but tetracyclic compound 10a, isolated in
52% yield.

In order to explore the scope of this new transforma-
tion, we prepared variously substituted o-tetralone
oximes 7b—m by the same three-step sequence outlined
in Scheme 1 for the parent substrate 7a. The structures
and yields are summarized in Table 1. Exposure of these
oximes to the combination of acetic anhydride and
acetic acid/methanesulfonic acid under the same con-
ditions previously used for 7a furnished the corre-
sponding tetracyclic ketones 10b—m after workup in
addition to variable amounts of the N-acetyl-naphthy-
lamines 9 resulting from the normal Schroeter reaction
(Table 2).
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Table 1. Synthesis of o-Tetralone Oximes 7a—m
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entry yield 5 [%] yield 6 [%] yield 7 [%]
a 83 55 95
b 87 62 94
c 86 48 94
d 72 48 76
e 69 50 78
f @ 48 87
g 96 42 83
h @ 32 81
i @ 51 98
j a 53 98
k 89 51 92
1 85 54 96
m 87 57 88

“One pot procedure from 1/14 to 6.

In most cases, the yield of the tetracyclic ketone was of
the order of 40—50%, and it was shown for several
examples that the corresponding N-acyl-naphthylamine
constituted most of the material balance. The presence
of electron-donating methoxy groups caused significant
erosion in the yield (entries b, d—e). The effect was most
noticeable when the methoxy group was attached to the
pendent aromatic ring (entries ¢—e). Furthermore, the
reactions were not clean for these cases. Numerous side
products were observed, which appeared to result from
Friedel—Crafts acylation of both the starting material
and the tetracyclic ketone and N-acetyl-naphthylamine
products. Indeed, the products of the electrophilic aro-
matic substitution reaction of 7¢ could be characterized
as the monoacetylated tetracycles 10ci (R* = H, R® =
acetyl) and 10cii (R> = H, R = acetyl) in a ratio of 7:3.
Furthermore, model experiments showed that the treat-
ment of (3,4-dimethoxyphenyl)acetic acid or 4-allyl-1,2-
dimethoxybenzene under the reaction conditions re-
sulted in complete conversion into the mono-, di-, and
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Table 2. Influence of the Electronic Nature of the Aromatic
Rings on the Ratio of the Products 9 and 10, Respectively
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@ Complex mixture of byproducts. ® Two acetylated products: 10ci
(R? = H, R® = acetyl): 10cii (R® = H, R* = acetyl) = 7:3. “After
reacetylation of the crude product.

triacetylated compounds along with noncharacterized
degradation products.

A plausible mechanism accounting for the formation of
tetracyclic derivatives 10 is displayed in Scheme 2 for the
case of 10j. The combination of acetic anhydride and
methanesulfonic acid is sufficiently powerful to further
acetylate oxime acetate 8 to give intermediate 11, which is
in equilibrium with enamide 12. This reaction is almost
certainly reversible and may not be complete. Enamide 12
normally would evolve into N-acetyl naphthylamide 9 by
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the Semmler—Wolff/Schroeter reaction. However, the
presence of a pendant aromatic ring opens up another
reaction pathway involving a Friedel—Crafts reaction and
leading to acetylimine 13. Hydrolysis during a basic work-
up would finally give rise to ketone 10.

Scheme 2. Proposed Mechanism of the Electrophilic Aromatic
Substitution Reaction
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Evidence for such a pathway was obtained by mod-
ifying the workup procedure to avoid as much as
possible the hydrolysis of intermediate 13j. Thus, by
diluting the crude reaction mixture with methanol, a
very brief treatment with aqueous sodium bicarbonate
followed by separation of the organic layer, drying,
evaporation, and rapid chromatography furnished
N-acetylimide 13j in 34% yield.

The use of unsubstituted oximes as precursors of a-
electrophiles in a C—C-bond formation process is unpre-
cedented as far as we can tell. The closest analogy is in a
very recent report by the group of Miyata, where reaction
of a cyclic N-alkoxy enamine with trialkyl- or triaryl-
aluminum reagents results in o-alkylation or a-arylation."!

Tetracyclic frameworks such as those present in 10 are
very rare. Two syntheses, depicted in Scheme 3, have been
reported so far. Both rely on intramolecular Friedel—-
Crafts reactions. The first, by Roberts and co-workers, '
involves generation of the requisite intermediate cation by
a hydride transfer from tetralin 16 and furnishes 2,3:6,7-
dibenzobicyclo[3.3.1]nona-2,6-diene 17. The second, by
Stetter and Reischl, hinges on a more classical double
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Makosza, M. Roczniki Chemii 1967, 41, 1037.
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intramolecular Friedel—Crafts reaction to generate the
central bicyclic scaffold in diketone 21."

Scheme 3. Synthetic Routes to Symmetric Tetracycles 3 and 7
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Despite the modest yields, due mostly to the existence
of the competing normal Schroeter reaction, the pre-
sent approach is short, convergent, and flexible. It
allows a rapid entry to variously susbstituted tetra-
cyclic ketones not readily accessible otherwise. But
perhaps more importantly, this work brings to the
fore an aspect of oxime reactivity hitherto unappreci-
ated, and this could have more far reaching synthetic
consequences.
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