
10.1021/ol2012204 r 2011 American Chemical Society
Published on Web 05/26/2011

ORGANIC
LETTERS

2011
Vol. 13, No. 12
3266–3269

Oxime Derivatives as r-Electrophiles.
From r-Tetralone Oximes to Tetracyclic
Frameworks

B�eatrice Quiclet-Sire,* Nina T€olle, Syeda Nahid Zafar, and Samir Z. Zard*

Laboratoire de Synth�ese Organique, CNRS UMR 7652 Ecole Polytechnique, 91128
Palaiseau Cedex, France

zard@poly.polytechnique.fr

Received May 8, 2011

ABSTRACT

When subjected to the conditions of a Semmler�Wolff/Schroeter aromatization, the oximes of 4-benzyl-substituted tetralones undergo an
electrophilic aromatic substitution reaction to form tetracyclic frameworks.

Various synthetic applications for oximes have been
reported since their first application to the identifica-
tion of ketones and aldehydes in the late 19th century.1

The Beckmann rearrangement of ketoximes is a classi-
cal textbook reaction, which has found widespread
utility.2 Oximes are known to react as O or N nucleo-
philes,3 and their use as CdN electrophiles has been
reported.4 Additionally, their C�H acidity is often
sufficient for R-alkylation-reactions, and coordination
of transition metal atoms can lead to a β-C�H activa-
tion through cyclopalladation reactions for example.5

A lesser known reaction is the aromatization under
acidic conditions of oximes derived from R,β-unsatu-
rated cyclohexanones, first described by Semmler and

Wolff and later extended to oximes of R-tetralones by
Schroeter and his collaborators.6

A few years ago, we devised a concise route to
R-tetralones7 based on the radical xanthate transfer
technology8 and applied it to the total synthesis of
a number of natural products such as norpar-
vulenone, O-methyl asparvenone, and shinanolone.9

We also found that R-tetralones 3, obtained by the
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addition�cyclization of an S-phenacyl xanthates 1 to
vinyl acetate or vinyl pivalate, underwent facile aroma-
tization upon heating with acid to give the correspond-
ing naphthols 4 (Scheme 1).10

To complement this very effective synthesis of naphthols
(and naphthalenes, more generally), we contemplated
applying the Semmler�Wolff/Schroeter reaction to obtain
R-naphthylamines. We therefore prepared R-tetralone
6a by addition of xanthate 1a to allylbenzene, and the
resulting adduct 5a was ring closed by exposure to stoi-
chiometric amounts of lauroyl peroxide. The correspond-
ing oxime 7a was then heated to 80 �C for 40 min in neat
acetic anhydride to form the O-acetate 8a, followed by
addition of a mixture of acetic and methanesulfonic acid
and heating to 130 �C for 30 min. We were surprised to
find after purification of the crude mixture that the major
product was not the expected N-acetyl naphthylamide
9a (32%) but tetracyclic compound 10a, isolated in
52% yield.
In order to explore the scope of this new transforma-

tion, we prepared variously substituted R-tetralone
oximes 7b�m by the same three-step sequence outlined
in Scheme 1 for the parent substrate 7a. The structures
and yields are summarized in Table 1. Exposure of these
oximes to the combination of acetic anhydride and
acetic acid/methanesulfonic acid under the same con-
ditions previously used for 7a furnished the corre-
sponding tetracyclic ketones 10b�m after workup in
addition to variable amounts of the N-acetyl-naphthy-
lamines 9 resulting from the normal Schroeter reaction
(Table 2).

Inmost cases, the yield of the tetracyclic ketone was of
the order of 40�50%, and it was shown for several
examples that the correspondingN-acyl-naphthylamine
constituted most of the material balance. The presence
of electron-donating methoxy groups caused significant
erosion in the yield (entries b, d�e). The effect was most
noticeable when the methoxy group was attached to the
pendent aromatic ring (entries c�e). Furthermore, the
reactions were not clean for these cases. Numerous side
products were observed, which appeared to result from
Friedel�Crafts acylation of both the starting material
and the tetracyclic ketone and N-acetyl-naphthylamine
products. Indeed, the products of the electrophilic aro-
matic substitution reaction of 7c could be characterized
as the monoacetylated tetracycles 10ci (R3 = H, R5 =
acetyl) and 10cii (R5 =H, R3= acetyl) in a ratio of 7:3.
Furthermore, model experiments showed that the treat-
ment of (3,4-dimethoxyphenyl)acetic acid or 4-allyl-1,2-
dimethoxybenzene under the reaction conditions re-
sulted in complete conversion into the mono-, di-, and

Scheme 1. Unexpected Formation of a Tetracyclic Product

Table 1. Synthesis of R-Tetralone Oximes 7a�m

entry yield 5 [%] yield 6 [%] yield 7 [%]

a 83 55 95

b 87 62 94

c 86 48 94

d 72 48 76

e 69 50 78

f a 48 87

g 96 42 83

h a 32 81

i a 51 98

j a 53 98

k 89 51 92

l 85 54 96

m 87 57 88

aOne pot procedure from 1/14 to 6.
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triacetylated compounds along with noncharacterized
degradation products.
A plausible mechanism accounting for the formation of

tetracyclic derivatives 10 is displayed in Scheme 2 for the
case of 10j. The combination of acetic anhydride and
methanesulfonic acid is sufficiently powerful to further
acetylate oxime acetate 8 to give intermediate 11, which is
in equilibrium with enamide 12. This reaction is almost
certainly reversible and may not be complete. Enamide 12
normally would evolve into N-acetyl naphthylamide 9 by

the Semmler�Wolff/Schroeter reaction. However, the
presence of a pendant aromatic ring opens up another
reaction pathway involving a Friedel�Crafts reaction and
leading to acetylimine 13. Hydrolysis during a basic work-
up would finally give rise to ketone 10.

Evidence for such a pathway was obtained by mod-
ifying the workup procedure to avoid as much as
possible the hydrolysis of intermediate 13j. Thus, by
diluting the crude reaction mixture with methanol, a
very brief treatment with aqueous sodium bicarbonate
followed by separation of the organic layer, drying,
evaporation, and rapid chromatography furnished
N-acetylimide 13j in 34% yield.
The use of unsubstituted oximes as precursors of R-

electrophiles in a C�C-bond formation process is unpre-
cedented as far as we can tell. The closest analogy is in a
very recent report by the group of Miyata, where reaction
of a cyclic N-alkoxy enamine with trialkyl- or triaryl-
aluminumreagents results inR-alkylationorR-arylation.11

Tetracyclic frameworks such as those present in 10 are
very rare. Two syntheses, depicted in Scheme 3, have been
reported so far. Both rely on intramolecular Friedel�-
Crafts reactions. The first, by Roberts and co-workers,12

involves generation of the requisite intermediate cation by
a hydride transfer from tetralin 16 and furnishes 2,3:6,7-
dibenzobicyclo[3.3.1]nona-2,6-diene 17. The second, by
Stetter and Reischl, hinges on a more classical double

Table 2. Influence of the Electronic Nature of the Aromatic
Rings on the Ratio of the Products 9 and 10, Respectively

aComplex mixture of byproducts. bTwo acetylated products: 10ci
(R3 = H, R5 = acetyl): 10cii (R5 = H, R3 = acetyl) = 7:3. cAfter
reacetylation of the crude product.

Scheme 2. Proposed Mechanism of the Electrophilic Aromatic
Substitution Reaction
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intramolecular Friedel�Crafts reaction to generate the
central bicyclic scaffold in diketone 21.13

Despite the modest yields, due mostly to the existence
of the competing normal Schroeter reaction, the pre-
sent approach is short, convergent, and flexible. It
allows a rapid entry to variously susbstituted tetra-
cyclic ketones not readily accessible otherwise. But
perhaps more importantly, this work brings to the
fore an aspect of oxime reactivity hitherto unappreci-
ated, and this could have more far reaching synthetic
consequences.
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Scheme 3. Synthetic Routes to Symmetric Tetracycles 3 and 7


